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Abstract. A stochastic jump model is applied to calculate the relaxation of oriented probes 
diffusing interstitially through a rigid lattice. The whole dynamical range from immobile to 
rapidly diffusing probes is covered. In contrast to what was done in earlier work, the dipole- 
dipole interaction between probe and host is taken into account quantitatively. For the static 
case and the limiting case of rapid diffusion, respectively, well known expressions both for 
static linewidth as well as for relaxation rates are rederived. The results are compared with 
the theory of Kubo and Tomita, where the local fields are treated only phenomenologically. 

1. Introduction 

Nuclear magnetic resonance (NMR) is the classical microscopic method to study diffusion 
(Abragam 1961). Related techniques using radioactive probes are P-NMR (Ackermann 
et a1 1983) and muon spin rotation (y-SR) (Proc. 7th Yamada Conference on p-SR 1983). 
In all these experiments the spin orientation of the probes is monitored, either by 
magnetic induction as in conventional NMR, or by the anisotropy of the radioactive 
decay. Diffusion of the probes leads to a loss of the spin orientation caused by fluctuating 
dipole-dipole interactions between the spins of the probe and of the host nuclei. Fluc- 
tuating electric field gradients may equally well destroy the orientation by their inter- 
action with the probe’s quadrupole moment, if present. 

Essentially two different approaches have been applied to calculate the influence of 
the diffusion process on probe orientation. In the classical papers of Wangsness and 
Bloch (1953) and Redfield (1957) the fluctuating interactions are treated in second-order 
perturbation theory. Applying several approximations discussed in textbooks on NMR 
(see, e.g. , Abragam 1961), an exponential relaxation of the spin orientation is obtained. 
The relaxation rates are proportional to spectral density functions, being Fourier trans- 
forms of autocorrelation functions of the fluctuating fields. Spectral density functions 
for different detailed jump models have been calculated by Sholl (1981) (see also 
references in this paper) and co-workers in a number of papers. 

The relaxation theories mentioned above work only in the so-called narrowing 
region, where many jumps are performed by the probe during one precession of the spin 
about the local fields. These theories are not applicable at low temperatures where the 
probes sit immobile in the lattice. If the whole dynamic range from immobile to rapidly 
diffusing probes is to be described, stochastic relaxation theories have to be applied. 
Anderson (1954) and Kubo and Tomita (1954) studied in two pioneering works the 
influence of local field fluctuations on NMR line shapes and on the transverse polarisation 
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of the probe. Markovian Gaussian fluctuations were assumed, the dipole-dipole inter- 
action between probe and host nuclei was approximated by a Gaussian distribution of 
local fields. In the limit of infinitely long correlation times of the fluctuations, a Gaussian 
decay of the transverse polarisation was obtained, and for short correlations times 
the polarisation decreased exponentially. In more recent papers the assumption of 
Markovian Gaussian jumps was abandoned. Czech and Kehr (1986) (see also references 
given in this paper) treated the case of field fluctuations produced by a random walk 
of the probe. Again, a Gaussian decay was obtained for very long correlation times 
corresponding to immobile probes, and again for short correlation times an exponential 
decay was observed. The decay constant for the latter case, however, differed from that 
obtained under the Gaussian Markovian assumption. 

In all papers known to the author the dipole-dipole interaction was taken into 
account onlyqualitatively. It is the aim of this paper to show that a quantitative treatment 
of the dipole-dipole interaction within the frame of stochastic theories is possible 
and, in fact, often is indispensable for the quantitative interpretation of experimental 
relaxation data. 

The paper is organised as follows. In § 2 the stochastic model is introduced. It is a 
generalisation of existing models where only local jumps are treated (Dattagupta 1987) 
to the case of interstitial diffusion where the whole interstitial lattice is accessible to the 
probe. As a consequence, a Liouville Master-equation system for the components of 
density matrix is obtained depending on about lo2* variables. A variant of the effective 
medium approximation (Kirkpatrick 1973, Summerfield 1981) is applied in 0 3 to solve 
this equation system. In § 4 well known expressions for static linewidth as well as for 
relaxation rates and spectral density functions are rederived for the two limiting cases 
of immobile and rapidly diffusing probes, respectively. In $ 5  it is shown that the 
Kubo-Tomita theory (1954) is valid only for small jump rates compared to the Larmor 
frequencies of probe and host because of the phenomenological treatment of the local 
fields (see also Hayano et a1 1979, Seeger 1984). The results of this paper, on the other 
hand, are not limited in this respect, since the dipole-dipole interactions between probe 
and host nuclei are taken explicitly into account. Several derivatives of a more technical 
nature are presented in three appendices. 

2. The stochastic model 

The Hamiltonian X for the prohe-host interaction of an impurity diffusing through a 
lattice can be decomposed into a static part X o  and a fluctuating part Xe , ( r ( t ) ) ,  changing 
with every jump, 

X ( t )  = X o  + X/e(r ( t ) ) .  (2.1) 

In the following it is assumed that an isolated impurity is diffusing interstitially through 
a rigid lattice of host nuclei. It is further assumed that no static electric field gradients 
are present, and that the dipole-dipole interactions between the host nuclei can be 
neglected for present purposes. Then X o  contains only the Zeeman interaction with the 
external induction B ,  

X o  = - ?i WIZ* + us 2 s,, 1 (2.2) ( i 

where uI = ylB, us = ysB. Zdenotes the spin of the impurity, and Si the spins of the host 
nuclei. X l ( r ( t ) )  is given by the dipole-dipole interaction between impurity and host 



A stochastic relaxation model 5103 

nuclei 

xi (r( t>)  = C x D D  (1, S, 9 r(t> - r , )  (2.3) 

where r(t)  denotes the site of the impurity and rr the site of the host nucleus i. The explicit 
form for YeDD can be found in every textbook on NMR (e.g., Abragam 1961; see also 
Appendix 2). 

For host spins S, > 4 additional fluctuating quadrupole interactions are produced by 
the charge of the impurity at neighbouring host nuclei. These interactions are not 
considered here. They are of importance, however, if cross relaxation processes between 
impurity and host nuclei are to be considered (see, e.g., Kreitzmann 1986, Jager et a1 
1987). 

The density matrix p describing the change in the orientation of the impurity with 
time is obtained as solution of the Liouville equation 

where the Liouville operators Lo and L l ( r ( t ) )  are defined by 
6 = (i/h)[p, x0 + x , ( r ( t ) ) l  = - i {LO + L , ( r ( t ) ) } ~  

LOP = (l/n>[xe,, PI 

(2.4) 

L , ( r ( t ) ) p  = ( m x l ( m >  PI. 
In further calculations it is assumed that r(t)  is piecewise constant and changes 

discontinuously with every jump. The jumps shall be Markovian, i.e., the transition 
probability is independent of the history of preceding jumps. It is further assumed 
that the process is stationary, i.e., the transition probability depends only on the time 
difference between successive jumps. 

Assuming stationary Markovian jumps the density matrix p can be decomposed as 
follows 

P = c P ( r n )  (2.5) 
In 

where the sum is over all possible interstitial sites r,. The p(r,,) obey a Liouville Master- 
equation system, 

~ ( r n )  = - iLoArn> - i ~ I ( r n ) ~ ( r n )  + C [ w ( r m ,  r n > p ( r m >  - w(rn, r m ) ~ ( r n ) ~ .  
(2.6) 

The first two terms describe the reorientation of the impurityat site r, under the influence 
of external and local fields respectively, the following terms describe the jumps of the 
impurity between different sites. w ( r m ,  rn) is the jump rate from site rm to site r,. Because 
of the translational symmetry of the lattice the jump rate depends only on the difference 
of the jump vectors, 

The derivation of equation (2.6) can be found in Dattagupta (1987, ch. VIII). 
w(rn > r m )  = w(rn - r m ) .  (2.7) 

In an abbreviated notation equation (2.6) can be written as follows 
p = - (iLOl + iL1 + W ) p  

( T n I I l r m )  = 6 ( r n  - rm) 

(rn IL1 I r m )  = 6 ( r ,  - r m ) L l ( r n )  

(2.8) 
where p now is a ‘super’ vector with elements p(r , )  and I, L, and W are ‘super’ matrices 
with elements 

(2.9) 
( r n I W I r m )  = 6(rn  - r m )  E w(rn - rk) - w(r ,  - r , )  

rk 
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where 

if r n  = Y ,  

if r n  # r , .  
q r ,  - r , )  = 

In experiments using radioactive impurities often only the time average of p(t) is 
measured, 

p(A) = A Iffi exp( -At)p(t) d t  
0 

(2.10) 

where A is the decay constant of the impurity. By means of standard Laplace transform 
techniques, one obtains from equations (2.8) and (2.5) 

P ( A )  = (A /N)  2 ( r n 1 [ ( ~  + iLo)l+ iL1 + ~ ] - ' / r , ) p ( ~ ) .  (2.11) 
r n , r m  

p(0) is the density matrix at time t = 0. It was assumed that there are Npossible interstitial 
sites, each of which is populated with equal probability. 

In the system of basis vectors Ir,) L1 is diagonal, but W is not (see equation (2.9)). 
This basis system is appropriate for low jump rates. In the case of rapid diffusion, on the 
other hand, basis vectors in the reciprocal lattice are useful, which are defined as 

(2.12) 

Periodic boundary conditions were assumed. In the new basis L1 is no longer diagonal, 
but W becomes diagonal because of the translational invariance of the lattice, 

(2.13) 

( k , l ~ l k , j  = 6 ( k ,  - k p )  2 [I - exp(-i~,rn)]w(r,,) = 6 ( k ,  - k , ) ~ ( k , ) .  

For later use we note that 

' n  

&(ko)  = 0 (2.14) 

where ko = (0, 0,O) is the null vector in the reciprocal lattice. In the Ik,) basis equation 
(2.11) can alternatively be written as follows 

(2.15) 

If only the orientation of the impurity is observed, equation (2.15) has to be averaged 
over the lattice spin variables, 

P(A) = W O  IGlko)P(O) (2.16) 

p(A) = A(ko /[(A + iLo) I + i L1 + W]-' Iko>p(0). 

where G is given by 

G = Tr,{[(A + iLo)l + L1 + W]-'pS(O)}. (2.17) 

Whereas in equation (2.15) p(A) and p(0) denote the orientation of the coupled system 
of probe spin Zand all host spins S , ,  from now on the same symbols denote the orientation 
of the Z spin alone. In the following, the Boltzmann orientation of the lattice spins is 
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assumed to be small compared with the orientation of the impurity (this situation is met, 
e.g., in experiments using muons or p-active nuclei). Then the S density matrix ps(0) 
reduces to the unity matrix (in equation (2.17), Tr denotes the normalised trace, i.e., 
Tr I = 1. This convention has been adopted to avoid normalisation prefactors). 

Equation (2.17) can be transformed by use of the matrix identity 

[(A + iLo)l + iL1 + W]-' = ( I  - iGoLl)[(A + iLo)l + W + LIGoLl]-' (2.18) 

where 

Go = [(A + iLo)l + WI-'. (2.19) 

Because only even powers of L1 contribute to the trace over the Si variables, one obtains 
from equations (2.17) and (2.18) 

G = Trs{[(A + iLo)l + W + LIGoLl]-l Is}. (2.20) 

This relation is still exact (within the limits of the stochastic model). From now on, 
however, the calculation is restricted to the case that the local fields are small compared 
with the external one. Then the term (A + iLo)l is large compared to LIGoL1, and all 
parts of LIGoLl not commuting with Lo can be discarded. This corresponds to a neglection 
of terms of order L: , and all results derived below are correct only up to order Lf , With 
this approximation one gets 

G = Trs{[(A + iLo)I + W + (LIGoLl)trunc]-l Is}. 

The operator Lo can be written as a sum, Lo = LoI + Los, where Lol acts only on the I 
spin variables, and Los only on the Si spin variables. Los commutes with Lor, W and 
(LIGOLl)trunc. Furthermore, the action of Los on Is gives zero. Therefore the above 
equation is equivalent to 

G = Trs{[(A + iLoI)l + W + (LIGoLl)trunc]-l Is}. (2.21) 

From equations (2.16) and (2.21) p(A) can in principle be calculated. The number of 
possible interstitial sites, however, is of the order of the number of atoms in the probe. 
Thus the rank of the matrix to be inverted in equation (2.21) is of the order of loz2, and 
further approximations are necessary. 

3. The effective medium approximation 

The trace over all Si variables in equation (2.21) can be interpreted as an average over 
all possible spin configurations of the host lattice. This average can be simulated by 
replacing the operator (LIGOLl)trunc by an effective medium operator 51 being inde- 
pendent of the Si variables, 

G = [(A + iLoI)I + w + a]-'. (3.1) 
51 has to be determined such that equations (3.1) and (2.21) are consistent. To this end 
the following identity is used, 

[(A + iLoI)l + W + (LIGoLl)trunc]-' = G - GA(1 + GA)-'G ( 3 4  

(3.3) 

where A is defined by 

A = (L1GoLl)trunc - a* 
Taking the trace over the Si variables and using equation (2.21), we get 

Trs[GA(l + GA)-'G] = 0 
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or, since G is independent of the Si variables 

Tr,[GA(I + GA)-l] = 0. 

Equation (3.4) defines implicitly A and thus 0. Written in terms of matrix elements, 
(3.4) reads as follows 

Trs[(r ,~GA~rk)(rk~(l  + GA)-'Ir,)] = 0. (3.5) 
r k  

Now, three approximations are applied: 
(i) Since A is the difference between the operator (LIGOLl)trunc (depending on actual 

local spin configurations) and the effective medium operator 0, the operator GA can be 
considered to be small compared with I. Thus equation (3.5) can be replaced by 

Trs[(r, lGAIr,)(l + (rmlGA1rm))-l] = 0. (3 * 6) 
(ii) The matrix elements (r,lGAlr,) and (rmlGAlrm) are assumed to be uncorrelated 

for r, # r,. Then the traces of (r,/GAlr,) and of (1 + (rmlGAlrm))-l can be performed 
separately. This leads to 

Trs(r,lGAlrm) = 0 if r ,  # r ,  

or 

( r ,  I G a I r m )  = ( r n  I G R I r m )  

R = Trs(L1GoLl)trunc. 

(3.7) 
where 

It is easy to show that the parts of LIGoLl not commuting with Lo do not contribute to 
the trace. Therefore we may write equivalently 

R = Trs(LIGoL1) ( 3 4  

Trs[(r,IGAIr,)/(l + (~,IGAI~,))I  = 0. (3.9) 

(iii) For r ,  = r ,  one gets from equation (3.6) 

For the calculation of the trace we use the phenomenological ansatz 

(3.10) 

Equation (3.10) can be motivated as follows: L1 describes the dipole-dipole interaction 
between probe and all host nuclei. In the classical approximation this interaction can be 
replaced by the interaction of the probe with the local magnetic fields, and the trace over 
the S spins can be replaced by an average over the local fields. Assuming a Gaussian 
distribution of local fields one gets equation (3.10). For the special case f(x) = x the 
equation gives an identity. 

Applying equation (3.10) to (3.9) one gets, after some straightforward trans- 
formations, 

(3.11) 

(3.12) 
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where F(x)  is implicitly defined by 

1 exp( -z2/2) d z  
QE --5c 1 - F(x) + x z 2  = l. 

(3.13) 

In Appendix 1 it is shown that G can be determined without any further approximation 
using only equations (3.7) and (3.12). The result is 

G = [(A + iLoI)i + W + RI-l  (3.14) 

where the operator A is given by 

A = (l/N) 2 (k,I[(A + iLoI)l + W + R]-'Rlk,). (3.15) 

Since R = Trs(L,GoLl) is invariant against translations of the lattice, it is diagonal in the 
reciprocal-lattice basis, 

(3.16) 

k ,  

(ka  IRlk,) = d ( k a  - kp)R(ka)*  
R(k,)  is given by 

R ( k a )  = 2 exp[-ika(rn -rm)] T~~[LDD(I,  S, r n )  
rnrm 

(3.17) 

(see Appendix 2). LDD(Z, S, r,) is the Liouville operator for the dipole-dipole interaction 
between impurity spin I and host lattice spin S at distance r, (see equation (2.3)), and 

(3.18) 

Using equations (3.16) and (2.13), A can be written as 

A = (I/N) 2 [(A + iLoI) + &pa) + ~ ( k , ) ] - l ~ ( k , ) .  (3.19) 
k m  

Substituting (3.14) into (2.16), one finally gets 

(3.20) 

where equation (2.14) was used. Equation (3.20) is themain result ofthispaper. A closed 
expression for p(A) is obtained. The main computational effort lies in the calculation of 
R(k,) by means of equation (3.17). This is a straightforward but rather tedious task. The 
expressions simplify considerably if @(ka) in equations (3.18) and (3.19) is approximated 
by an averaged jump rate W (it will be seen later that this approximation will lead to BPP- 
like spectral density functions (Bloembergen et a1 1948). One obtains from (3.17) 

(3.21) 

where R(k,) = R is now independent of k,. Substituting this expression into equations 
(3.19) and (3.20), one gets 

(3.22) A = (A + iLoI + W + R ) - ' R  
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and 

A+iLoI+G+R 1 exp(-z2/2)dz 
AP(0). '('I = A +iLoI + R A +iLo, + G+ Rz2 

(3.23) 

In order to calculate p(t)  from p(A), an inverse Laplace transform has to be performed. 
This can be done only numerically for the exact expression (3.20). In the case of 
approximation (3.23) or in the limiting cases of slow and rapid diffusion, however, the 
inverse Laplace transform can be performed explicitly as will be shown in the next 
sections. 

4. Limiting cases 

4.1. Rapid diffusion 

In the limit of large jump rates P(A + iLo, rn) and thus R (k,)  are proportional to w-l 

(see equations (3.17) and (3.18)). As a consequence, A + Ofor rapidly diffusingprobes, 
as can be seen from equation (3.19). Then equation (3.20) can be replaced by 

'(A) = [A + iLoI + R(ko)]-lAp(0). 

P = 2 PimTim(1) .  

(4.1) 
The density matrix can always be decomposed into its irreducible components plm, 

im 

From the orthogonality of the irreducible tensor operator Tlm(I) one gets 

Plm = T ~ I { T A ( ~ P }  ( 4 4  

T ~ I {  T 6 m  1 ( I )  T i 2 m z ( 4 }  = 8 11/28 m 1m 2 -  

where it is assumed that the Tlm(I) are normalised, 

Several slightly deviating definitions for the Pim can be found in the literature. The Tim(Z) 
are eigenoperators to Lo (see equation (2.2)), 

LoT/m(I) = - mwITim(0. (4.3) 
The Tlm(I) are eigenoperators to R(k,) ,  too, since R(ko) commutes with Lo (this is a 
consequence of the truncation procedure applied in equation (2.21)). Using equations 
(4.2) and (4.3), one obtains from (4.1) 

P i m ( A )  = (i + Rh)-'APim(O)* (4.4) 
We have introduced the new variable 

I =  A - imoI.  (4.5) 
Substitution of A by 1 corresponds to a transition into a coordinate system rotating with 
angular frequency mwI about the axis of the external induction B.  RI, is given by 

Rlm = TrATik(I)R(ko)Tlm(I)}* (4.6) 
Expressions for RI, are given in Appendix 3. 

of Appendix 3, one gets for Rim 
The case of dipolar orientation, I = 1, is of special interest. Applying the formulae 
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Irl, 6, Q, are the polar coordinates of r ,  and P(A - i o ,  r)  is given by equation (3.18). 
The decrease of the tensor orientation p,, does not follow a simple exponential law 

since R, depends on x. From the formulae for the inverse Laplace transform, however, 
it can be seen that this dependence can be neglected if the relaxation rate RI, is small 
compared to the jump rate w. In this case the inverse Laplace transform of pl,(A) (see 
equation (4.4)) can easily be performed with the result 

(4.10) 
If RI, is real, equation (4.10) describes a precession of the tensor component plm with 
angular frequency -mul and an exponential damping of the amplitude with time 
constant Rim. Equation (4.6), however, shows that R,, is real only form = 0. Form # 
0 only the real part of RI, has the meaning of a relaxation rate, whereas the imaginary 
part leads to a small shift of the precession frequency. 

Exactly the same results are obtained by perturbation theory. In the limit x+ 0 
equations (4.7) reduce to well known expressions for longitudinal and transverse relax- 
ation rates for the case of dipolar coupling between unlike spins (see Abragam 1961, ch 
VI11 E). Equation (4.8) for Jm(A  - iw) is equivalent to the expression used, e.g., by 
Sholl and co-workers (1981) to evaluate random walk spectral density functions for a 
number of different jump models (with the only difference that in the present work the 
argumentofJ,iscomplex). It shouldbenoted, however, thatintheworksofSholletaZthe 
spectral density functions were obtained from perturbation theory, and the narrowing 
condition was assumed to hold. In the present work the jump model was incorporated 
already from the very beginning (equation (2.6)) without any apriori assumption about 
the jump rate. 

Ifapproximation (3.21)forR(ko) isapplied, oneobtainsfortherealpartofJ,(A - iw) 

Plm(t) = e x ~ ( - i m u ~ t  - R,mt)Plm(O)* 

(4.11) 
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In the limit A W equation (4.11) leads exactly to the BPP approximation for the spectral 
density function, if W-' is identified with the correlation time z, entering as a phenom- 
enological parameter into the BPP model. 

4.2. Static case 

In the case of immobile probes, w = 0, equation (3.20) simplifies to 

P(A) = - M O ) .  A + iLol + Rz2 (4.12) 

This result can be obtained directly from equation (3.23) by taking W = 0 (the substitution 
of w(k,) by W, applied in the derivation of (3.23), is trivially correct, if w = 0). For the 
tensor component plm one obtains in an analogous way as above 

(4.13) 

For further discussion we restrict ourselves to the case 1 = m = 1. Equation (4.7) shows 
that for w = 0 the term i J o ( i )  is large compared to all other contributions, i.e., R I ,  can 
be approximated by 

(4.14) R,, = h2 y: yis(s + l )QJo( i ) .  
Inserting expression (4.8) for J o ( i ) ,  one obtains for w = 0 

R,,  = a2/(A - iol) (4.15) 

where 

(4.16) 

This is exactly the van Vleck expression for the dipolar linewidth due to interactions 
between unlike spins (van Vleck 1948). Inserting equation (4.15) into (4.13), one gets 

(4.17) 

The inverse Laplace transform of (4.17) and the following z-integration can easily be 
performed with the result 

(4.18) 

The tensor orientation pll(t) precesses with angular frequency -iol about the axis of 
the magnetic field, the damping of the amplitude is Gaussian due to reorientation of the 
probes in the inhomogeneous local fields. 

pll(t) = exp( -io,t - ;a2t2)pll(0). 

5. Discussion 

The influence of stochastic jumps on the polarisation of diffusing probes was studied in 
a classical paper by Kubo and Tomita (1954). They obtain for the time dependence of 
the transversal dipolar polarisation 

pll ( t )  = exp[ - iwlt - a2 zf(e-'"c - 1 + t/z,)]pI1 (0). (5.1) 
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U is the dipolar linewidth as given by eq. (4.16), t, is a phenomenological correlation 
time being of the order of the reciprocal jump rate. In the derivation of equation (5.1) 
a stationary Gaussian Markov process was assumed (see, e.g., Kubo (1969) for details). 
The local fields were introduced purely phenomenologically, the nuclear dipole-dipole 
interaction was not taken into account explicitly. 

In the two limiting cases of immobile and rapidly diffusing probes, respectively, 
equation (5.1) reduces to 

exp( - 402t2) immobile probe 

exp( - 02rc t )  rapidly diffusing probe. 

Equation (5.2) is to be compared with the results derived in § 4 for the two limiting cases 
(see equations (4.10) and (4.18), respectively), 

exp( -io2t2) immobile probe 

exp( - R I I t )  rapidly diffusing probe (5.3) 

where Rll is given by equation (4.7) with h = 0. It is seen that for immobile probes 
expressions (5.2) and (5.3) are identical. For rapidly diffusing probes, however, (5.2) 
and (5.3) are only consistent, if 

Only the secular part of the dipole-dipole interaction XDD contributes to the static 
linewidth U ,  whereas both secular and non-secular contributions enter into Rl l .  The 
secular part of YeDD gives rise to the first term BJo(0) on the right-hand side of equation 
(4.7) for Rl l .  The other five terms can be attributed to the non-secular parts. Equation 
(5.4) is therefore at most valid if the latter contributions are small compared to the first 
one. This leads to 

14, I o s I ,  Io, * 4 s=- @ (5 .5)  
where W is a typical jump rate. It has already been pointed out by Hayano et a1 (1979) 
that these conditions are necessary for the Kubo-Tomita formula to hold (see also Seeger 
1984, appendix). Using equations (4.8) and (3.18), the remaining part of R I ,  
follows 

Equations (5.4) and (5.6) become identical only if additionally the BPP approximation, 
$(IC,) = W, is applied, and if W-' is identified with t,. 

This discussion has shown that the connection between static linewidth o and relax- 
ation rate R1, as is predicted by the Kubo-Tomita theory (equation (5.4)) is correct 
quantitatively only if(i) relations (5 .5)  hold, and (ii) the BPP approximation is applied. 

All the difficulties with the Kubo-Tomita theory discussed above have their cause in 
the qualitative treatment of the dipole-dipole interaction. For a quantitative under- 
standing of the relaxation of interstitially diffusing probes, the formulae derived in this 
paper should be used. Considerable computational effort, however, is necessary to 
evaluate expression (3.20). If the explicit time dependence of p(t)  is needed, an 
additional inverse Laplace transform has to be applied which can be performed ana- 
lytically only in the two limiting cases. 
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Things simplify considerably if the BPP approximation is applied. The calculation of 
p(A) by means of expression (3.23) is straightforward (the integral can be expressed in 
terms of the error function). Even the inverse Laplace transform can be performed 
analytically. The latter statement holds even if the explicit A-dependence of R is taken 
into account. 

Appendix 1. Proof of equation (3.14) 

The operator Gn-GR is diagonal in the Ir,) basis by virtue of equation (3.7). Fur- 
thermore, the matrix element (r,IG~-GRlr,) is independent of r,, because of the trans- 
lational invariance of the lattice. Therefore, G&GR is a multiple of the unity operator, 

Gn-GR = ( r ,  lGfl-GRlr,)l. (Al.1) 
With the definition 

Go1 = [A + iLOI)l + WJ-' (A1.2) 
one can write 

= G - 1  - G-1 OI (A1.3) 
where equation (3.1) was used. Inserting expression (A1.3) into (Al . l )  one gets 

G(Go;' + R) = [ l  + x - F ( x ) ] ~  

where 
x = ( r ,  IGRIr,) 

and 

F(x) = ( y ,  I Gfl I r n  >, 
(see equation (3.12)). From (A3.4) it follows that 

and, by taking the diagonal matrix element in the Ir,) basis, 
GR = [l + x - F(x)](GO;' + R)-'R 

x = [l + x - F(X)]  A 
where A is defined as 

A = (r,/(Gi: + R)-'RIrn). 
In the lk,) basis, equation (A1.8) can be alternatively written as 

A = (1/N) (k,/GG' + R)-'R/k,). 
k a  

Both Goland R are diagonals in the lk,) basis. From (A1.7) it follows that 
1 - F(x) = x(A-l - 1). 

Inserting this expression into (3.13), we obtain 
1 5c exp(-z2/2)dz 

= ?E I-, FG-7 
Using (A1.4) and (A1.7), one finally gets 

1 exp( -z2/2) d z  
1 - A + A z 2  ' 

G = (Gi; +R)-lA-lx = (GO;' + R)-' tr 

(A1.4) 

(A1.5) 

(A1.6) 

(A1.7) 

(A1.8) 

(A1.9) 

(A1.lO) 

(Al . l l )  
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Equation (Al . l l )  is equivalent to equation (3.14). 

Appendix 2. Proof of equation (3.17) 

Appendix 3. An expression for R,, (equation (4.6)) 

(A3.3) 

4112, m,, m2) is a Clebsch-Gordon coefficient, and Zm, S ,  are the irreducible com- 
ponents of I ,  S .  From (A3.2) it follows that 

(A3.4) LDD(z, s, r>Tim(O = - C. f~,~m~(r)T,m+ml(z)smz 
m imz 
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P[A- i (m+ml)o l - im20, ,  r ,  - r p ]  (A3.6) 

where it has been assumed that Tlm+ml(QSm2 is an eigenoperator to Lo. For the special 
case 1 = 1, expressions (4.7) are obtained. 
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